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Applications of direction of arrival (DoA) techniques have dramatically increased in various areas ranging from the traditional
wireless communication systems and rescue operations to GNSS systems and drone tracking. Particularly, police forces and
security companies have drawn their attention to drone tracking devices, in order to provide the safeness of citizens and of clients,
respectively. In this paper, we propose a low cost antenna array based drone tracking device for outdoor environments.The proposed
solution is divided into hardware and software parts.The hardware part of the proposed device is based on off-the-shelf components
such as an omnidirectional antenna array, a 4-channel software defined radio (SDR) platform with carrier frequency ranging from
70MHz to 6 GHz, a FPGAmotherboard, and a laptop.The software part includes algorithms for calibration, model order selection
(MOS), and DoA estimation, including specific preprocessing steps and a tensor-based estimator to increase the DoA accuracy.
We evaluate the performance of our proposed low cost solution in outdoor scenarios. According to our measurement campaigns,
we show that when the array is in the front fire position, i.e., with a DoA ranging from −60∘ to 60∘, the maximum and the average
DoA errors are 6∘ and 1,9∘, respectively.

1. Introduction

Applications of direction of arrival (DoA) techniques have
dramatically increased in various areas ranging from the
traditional wireless communication systems [1, 2] and rescue
operations [3] to GNSS systems [4–7] and drone tracking
in public and private events. In the last years Unmanned
Aerial Vehicles (UAVs) have been amajor concern of airspace
control bodies and military due to possible terrorist attacks
and illegal activities. In 2015, there were more than nine
hundred incidents involving drones and aircrafts in the
United States [8], whereas, in April 2016, a UAV reached an
aircraft landing at the Heathrow airport in London [9]. In
2016 in Dubai, four drones invaded the airport interrupting

the landings and take-offs, causing an estimated loss of one
million dollars [10]. In October 2017 in Canada, the first
reported collision of a drone and a commercial airplane has
occurred [11]. Recently police forces and security companies
have drawn their attention to drone tracking devices in order
to provide the safeness of citizens and of clients, respectively.
In this sense, the development of low cost devices for drone
tracking is fundamental to fit such demands.

In general, the DoA estimation techniques can be broadly
classified into conventional beamforming techniques, maxi-
mum likelihood techniques, and subspace-based techniques
[12–14]. In [15] the authors proposed to estimate the DoA of a
signal impinging the Electronically Steerable Parasitic Array
Radiator (ESPAR) antenna with twelve parasitic elements by
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2 Wireless Communications and Mobile Computing

using a support vector machine (SVM) technique. In the
anechoic chamber the result of the experiments reaches 0.67∘
estimation error. No hardware details were provided.

To overcome the effects of multipath propagation on
the performance of DoA estimation, the authors of [16]
proposed a frequency domainmultipath resolution subspace-
based approach, which makes RSS-based DoA estimation
applicable in multipath scenarios for small-size and low-
power sensor networks. This approach was verified with
Monte Carlo simulations with high SNR.

Aiming at the growth of connected cars systems, the
authors in [17] developed a 4×4 MIMO antenna system
and proposed the DoA function for a circular phased array
antenna. Since the focus of this paper is on the methodology
and basic characteristics of DoA function, no measurement
or hardware information was provided.

In [18], DoA estimation using an ESPAR with 12 parasitic
elements and one active monopole is carried out for wireless
sensor network (WSN) applications. The authors calibrated
the ESPAR array using an anechoic chamber. Since the
focus of [18] is on the calibration, no outdoor or indoor
measurement campaigns were performed by the authors.

An improvement of ESPAR antennas is proposed in
[19]. The authors developed a Multiple Beam Parasitic Array
Radiator (MBPAR) antenna that can realize six beams at the
same time without the use of diodes, which increases the
communication capacity. To validate the proposed design, a
prototype was fabricated at 2.45 GHz. The antenna has the
efficiency from 94.2 % to 95.7 % over the 2.4G-WLAN bands.
No DoA measurements were provided.

In [20], a square shaped 16 element antenna array is
connected to switches so that a four-channel SDR can select
four antennas at each side of the square, allowing a 360∘
DoA estimation in outdoor environments. Each side of the
square performs a ±45∘ azimuth estimation. According to the
authors, three Yagi antennas were used as sources at specific
points, and a maximum DoA error of 5∘ is achieved. No
information is provided about the real distance between the
sources and the receive array.

In [21], a four-element quasi-Yagi antenna array system
is applied for DoA estimation using the MUSIC algorithm,
whereas the Minimum Description Length (MDL) criterion
is used to estimate the number of dominant multipath
components. Only two measurements were performed for
two specific positions, showing an error of 1∘. However, no
information is provided about the experimental scenario.

In [22], several DoA estimation techniques are compared
considering a horizontal uniform linear array (ULA) with
12 elements inside an anechoic chamber. The measurements
were conducted varying the DoA from −20∘ to 20∘ in steps of4∘.TheDoA estimation errors were smaller than 2∘.TheMin-
Norm approach [12] outperformed MUSIC [23] although it
has a higher standard deviation.

Finally, in [24], the authors developed system using five-
port reflectometers that allow simultaneously measuring the
DoA and Time of Arrival (ToA) of coherent and incoherent
signals, connected to seven quasi-Yagi antennas, with one
reflectometer for each antenna. The MUSIC algorithm is
applied for the DoA estimation, providing an error of 2∘ for

one source and 0,5∘ for two sources. The measurements were
performed in a nonreflective environment.

In order to detect the presence of drones and to track
them, there is a variety of mechanical, optical, or antenna
array based solutions in the market. For instance, the
mechanical solution in [25] detects a drone within 3 km for
targets up to 55 cm in diameter and classifies the model of the
drone within 1.1 km.The position accuracy (azimuth) in [25]
is 1∘. In [26], a rechargeable portable drone tracking device
candetect and indicate the direction of a drone in a 360∘ plane
even with weak line of sight (LoS) component. The device in
[26] allows the communication with other devices by using
an Application Programming Interface (API) framework. No
technical information and patent about the principles behind
the device in [26] and its DoA accuracy were provided. In
[27], an antenna array based system is shown to detect with
a 1 km range and with 1∘ accuracy or with a 7 km range and
with 3∘ accuracy.

In [28], a mobile application (app) is proposed for drone
detection. According to the developers, the app has an
average range of 106 meters. The system allows the detection
of almost 95 % of all types of drones. However, the solution
in [28] does not indicate the position or the direction of the
drone.

In terms of drone tracking, there are recent works on
received signal strength (RSS)-based DoA estimation. For
example, [29, 30] propose to estimate the DoA using arrays of
Yagi-Uda directional antennas for the localization of drones
exploiting by their incoming NTSC signal in a measurement
campaign. The work [29] proposes a complete hardware and
software framework using arrays of directional antennas and
formulates a novel DoA estimation correction procedure. In
[30], a novel DoA estimation algorithm for the localization
of drones is validated by using an AD-FMCOMMS5-EBZ
software defined radio (SDR). Finally, [31] implemented tests
to detect and locate UAVs at 900MHz. The authors used
MUSIC combined with spatial smoothing and MDL. The
work [30] has a similar objective to our proposal; however
the authors did not concern in to present the accuracy of the
system and in use of low cost equipment.

In this paper, we propose a low cost antenna array based
drone tracking device for outdoor environments. To the best
of our knowledge, there are no state-of-the-art low cost
off-the-shelf antenna array based devices applied to drone
tracking. The problem of drone tracking is challenging due
to the several possible modulation schemes for the data
transmission, multipath propagation, and the possible long
operational distances. The proposed framework can also
exploit tensor-based techniques, such as the Parallel Factor
Analysis (PARAFAC). In contrast to the subspace-based
methods, the tensor-based approach shows to be robust in
real scenarios.

The remainder of this paper is divided as follows. In
Section 2, the data model is presented. Next, in Section 3, we
propose a low cost antenna array based drone tracking device
for outdoor environments, including a complete description
of the hardware and software, and the steps involved for
assembling, calibration, and signal processing. In Section 4,
we validate our proposed solution by means of measurement
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Wireless Communications and Mobile Computing 3

campaigns in an outdoor scenario. In Section 5, conclusions
are drawn.

2. Data Model

We assume 𝑑 be far-field sources transmitting narrow-band
signals.These planar wavefront signals impinge over a receive
antenna array with 𝑀 omnidirectional elements that are
uniformly and linearly disposed. The space Δ between two
adjacent antennas is equal to 𝜆/2, where 𝜆 is the wavelength
of the carrier signal. The received signals at the antenna array
can be written in a matrix form as follows:

X = AS +N ∈ C𝑀×𝑁, (1)

where A ∈ C𝑀×𝑑 is the steering matrix and its 𝑖-th steering
vector is given by

a (𝜇𝑖) = [1 𝑒𝑗𝜇𝑖 𝑒2𝑗𝜇𝑖 ⋅ ⋅ ⋅ 𝑒𝑗(𝑀−1)𝜇𝑖]T ∈ C𝑀×1, (2)

where 𝜇𝑖 is the spatial frequency that can be mapped into
the direction of arrival of the 𝑖-th source, 𝜃𝑖, by the following
expression: 𝜇𝑖 = 2𝜋Δ sin 𝜃𝑖/𝜆. S ∈ C𝑑×𝑁 is the symbol matrix
with N being the number of snapshots. N ∈ C𝑀×𝑁 stands for
the noisematrix whose elements are assumed to beComplex-
Valued Circularly Symmetric Gaussian and identically and
independently distributed (i.i.d.) random variables.

Given (1) and assuming that the noise and the signal are
uncorrelated, the covariance matrix can be computed by

RXX = E {xxH} = ARSSA
H + RNN, (3)

where x is one column vector from X, (⋅)H is the Hermitian
operator, and 𝐸{⋅} is the expected value operator. In practice,
the sample covariance matrix is calculated as follows:

R̂XX = XXH

𝑁 ∈ C𝑀×𝑀. (4)

The DoA techniques used along this paper exploit the
sample covariance matrix in (4). As shown in Section 3,
the matrix X is preprocessed before we compute the sample
covariance matrix R̂XX.

The goal of our proposed drone tracking device is to esti-
mate the direction of arrival (DoA) 𝜃1 of the line of sight (LoS)
component from a drone in an outdoor scenario. We assume
that there is no obstruction of the LoS component. Therefore,
the LoS component is assumed to have the greatest power in
comparison with the non-LoS components. Mathematically,
we can express it asa (𝜇1) s (𝜇1)F > a (𝜇𝑖) s (𝜇𝑖)F , (5)

for 𝑖 = 2, . . . , 𝑑. The operator ‖ ⋅ ‖F stands for the Frobenius
norm.

3. Proposed Low Cost Antenna Array Based
Drone Tracking Device

In this section, we detail the proposed low cost antenna array
based drone tracking device. In Section 3.1, we describe the

To PC

uProc & FPGA
Motherboard

SDR
Daughterboard

Power Divider

TX

RX

Figure 1: Assembled components for the hardware calibration
of four receive channels. The components are a microprocessor
(uProc), a FPGA motherboard, a SDR, a power divider, and cables.

steps for the hardware calibration. The calibration ensures
phase alignment for all the four channels of the SDR,
allowing the DoA estimation. In Section 3.2, we present the
assembling of the hardware components of the proposed
drone tracking device. In Section 3.3, we propose a signal
processing framework for DoA estimation.

3.1. Hardware Assembling for the Calibration. In order to
perform the measurements, the SDR should be calibrated,
such that all the receive channels become in phase.The phase
imbalance may be caused by different time initialization of
the oscillators and by hardware imperfections. The hardware
vendor provides a software [32] for clock calibration of the
local oscillator. However, this software does not perform
phase calibration.

Therefore, in order to perform the phase calibration,
the hardware components are first assembled according to
Figure 1. Note that the SDR transmits the signal from one
channel and receives it in four channels that should be
calibrated.

As shown in Figure 1, the SDR is a 4×4 MIMO plat-
form named ADFMCOMMS5 [33], with two AD9361 [34]
Integrated Circuits (ICs) that contain 2 transmitters and two
receivers each, ranging from 70 MHz to 6.0 GHz, and have
a channel bandwidth ranging from 200 kHz to 56 MHz.
The platform is connected to a microprocessor and a FPGA
motherboard [35] that configures the SDR and transmits the
SDR data to the PC. As shown in Figure 1, the cables for
calibration should have the same length. Moreover, a power
division component is included in order to lead the signal to
the four receive channels at the same time and to reduce the
power of the transmitted signal to avoid damaging.

To compensate the phase errors previously explained, the
first step is to extract the phase of the elements of the matrix
X. The phase 𝜙(𝑚, 𝑖) is defined as follows:

𝜙 (𝑚, 𝑖) = ∠𝑥 (𝑚, 𝑖) = arctan ( Im {𝑥 (𝑚, 𝑖)}
Re {𝑥 (𝑚, 𝑖)} ) , (6)

where 𝑥(𝑚, 𝑖) is the element in position 𝑚, 𝑖 of the measured
matrixX.The operators ∠, Im{⋅} and Re{⋅} stand for the phase
operator, the imaginary part of a complex number and the
real part of a complex number, respectively.
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4 Wireless Communications and Mobile Computing

RX A1 RX A2 RX A3 RX A4

Figure 2: Proposed low cost antenna array based drone tracking
device with 4 element ULA and a 4 × 4 MIMO SDR.

Since each channel is related to each line of the matrix X,
in order to compute the phase shift between two channels, we
compute the phase difference of two consecutive antennas

𝜔 (𝑚, :) = Φ (𝑚, :) −Φ (𝑟, :) ∈ C1×𝑁, (7)

where Φ stands for the matrix containing the calculated
phases by (6), 𝑟 indicates the reference channel, and𝑚 varies
from 1 toM.This reference channel can be randomly selected
from 1 to 𝑀 and is the input of the SDR that is used as a
reference to compensate the phase imbalance from the other
inputs. Since the vector 𝜔(𝑚, :) is the𝑚-th row ofmatrixΩ, in
case𝑚 = 𝑖, the 𝑖-th row ofΩ is filled with zeros. Finally, since
the phase difference may slightly vary for different samples in
the same row of Ω due to the thermal noise, we compute the
arithmetic mean of the elements of each row of Ω, obtaining
the vector 𝜔 ∈ C𝑀×1 and its𝑚-th element is given by

𝜔 (𝑚) = 1𝑁
𝑁∑
𝑛=1

Ω (𝑚, 𝑛) . (8)

Hence, in order to compensate the phase shift between
two different channels, we compute the vector c ∈ C𝑀×1. The𝑚-th element is given by

c (𝑚) = e−𝑗𝜔(𝑚). (9)

Note that the compensation vector c is computed only once
for the system initialization. The calibrated outputs of the
antenna array are given by the following expression:

Xc = diag {c}X, (10)

where the operator diag{⋅} transforms its argument vector
into the main diagonal of a diagonal matrix.

3.2. Hardware Assembling for the Drone Tracking Measure-
ment Campaign. After the hardware has been calibrated,
the next step is to assembly it in order to perform the
measurements.

The four-element omnidirectional antenna array is con-
nected to the calibrated hardware composed of the FPGA
motherboard and SDR daughterboard according to Figure 2.
Each antenna is dual band (from 2400MHz to 2483.5MHz

and from 4900 MHz to 5875 MHz ) [36] and has linear
polarization with 3.7 dBi of gain. The space Δ between two
consecutive antennas is equal to 5.99 cm. The operational
frequency𝑓 = 2.5GHz is themaximum frequency that avoids
aliasing.

3.3. Framework for DoA Estimation. Here, we first propose a
sample selection approach for DoA estimation by automatic
phase deviation detection. Then, we formulate a DoA esti-
mation framework exploiting preprocessing techniques and
model order selection schemes.

Figure 3 depicts the flowchart of the proposed signal
processing solution for DoA estimation.

As shown in Box 2 of the Figure 3, the phase deviation
correction proposed in Section 3.1 returns a matrix Xc that is
used in the sample selection scheme in Section 3.3.1.

3.3.1. Sample Selection for DoA Estimation by Automatic
Phase Deviation Detection. As exemplified Xc in Figure 4,
empirically we observed that the hardware causes phase
deviations on the samples in random time instants.Therefore,
we propose an approach to select the samples with phase
deviations for the DoA estimation.

Note that the phase compensation proposed in Section 3.1
has been applied to the samples, whose matrix Φ containing
the phases are depicted in Figure 4. Furthermore, note that
there are significant deviations that can degrade the DoA
estimation process. The main objective here is to remove
these phase deviations.

As shown in Figure 5, such ripples can be better visualized
by computing the phase difference in the time dimension
according to the following expression:

𝛾 (𝑚, 𝑖) = (𝜙 (𝑚, 𝑖 + 1) − 𝜙 (𝑚, 𝑖))2 , (11)

where 𝛾(𝑚, 𝑖) is the value containing the quadratic difference
of two consecutive time samples 𝑖 and 𝑖 + 1 of the 𝑚-th
channel.The𝜙(𝑚, 𝑖), from (6), is the element in position (𝑚, 𝑖)
of the matrix Φ.

Figure 5 draws the Γ that contains the result of (11). By
detecting the peaks, we can identify which samples should
be removed. For this task, we apply the approach proposed
in [37], which returns the green curve with the value of the
threshold.Therefore, the samples whose phase differences are
greater than the threshold are removed. The result after the
samples removed is presented in the following equation:

Xcs = [Xc (:, 1 : 𝑁1) | Xc (:, 𝑁2 : 𝑁3) | ⋅ ⋅ ⋅ |
Xc (:, 𝑁𝑇−1 : 𝑁𝑇)] , (12)

where Xcs is the matrix with the selected samples. Note that𝑁𝑇 = 𝑁 and the values of N𝑡, for 𝑡 = 1, . . . , 𝑇, are found by
comparing the phase difference values with the threshold in
Figure 5.

3.3.2. DoA Estimation Framework. According to Figure 3,
the matrix Xcs given in (12) is used to improve the DoA
estimation with preprocessing schemes. There are several
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Figure 3: Flowchart of the proposed solution for DoA estimation.
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DoA estimation schemes in the literature, such as beamform-
ing approaches and subspace-based approaches. Examples
of beamforming are Delay and Sum [38] and Capon [39],
whereas examples of classical subspace-based approaches are
MUSIC [23] and ESPRIT [40].

The DoA estimation schemes assume that the model
order 𝑑 is known. In practice, model order selection tech-
niques should be applied to estimate the model order 𝑑, as
depicted in Figure 3.

In the flowchart of Figure 3, we adopted the Exponential
Fitting Test (EFT) [43, 44] as the model order selection
scheme. The EFT has the deflation property that allows us
to find suitable thresholds as a function of the Probability
of False Alarm (Pfa). By exploiting the deflation property
and by finding suitable thresholds, the EFT has been the
only scheme in the literature to estimate 𝑑 = 1 in the
presence of a strong LoS signal and 𝑑 = 0 in the only
noise (no signal) measurements. We have compared several
schemes in the literature such as Akaike Information Crite-
rion (AIC) [45], Efficient Detection Criterion (EDC) [46],
Minimum Description Length (MDL) [47], Stein’s unbiased
risk estimate (SURE) [48], RADOI [49], ESTimation ERror
(ESTER) [50], and Subspace-based Automatic Model Order
Selection (SAMOS) [51]. The M-EFT [43, 44, 52] has also
been suitable, but an even smaller Pfa was required to
find the thresholds. The computation of the thresholds of
the EFT requires an extremely low Pfa. The complexity of
such a computation is prohibitive. Therefore, we propose in
Appendix A an extrapolation algorithm to compute such
thresholds. Note that our proposed extrapolation algorithm
has been applied in [53–56], although no details are provided.
The reason for extremely low Pfa may be related to the
noise behaviour as shown in Appendix B. Note that the
Ilmenau Package for Model Order Selection (IPM) [57]
with MATLAB and Java implementation of the model order
selection schemes can be found at the LASP homepage
(https://lasp.unb.br/index.php/publications/softwares/).

In order to further improve the accuracy of DoA esti-
mation schemes, preprocessing schemes can be applied
beforehand. We consider in this work the Vandermonde
Invariation Technique (VIT) [58], Spatial smoothing (SPS)
[59], and Forward Backward Averaging (FBA) [60, 61] as
a preprocessing schemes. As depicted in Figure 3, after the
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6 Wireless Communications and Mobile Computing

Table 1: Selected state-of-the-art DoA estimation schemes.

Delay And Sum [38] 𝑃DS (𝜃) = w (𝜃)H Rxxw (𝜃)
w (𝜃)H w (𝜃) . (13)

Capon [39] 𝑃CAP(𝜃) = 1
w (𝜃)H R−1xxw (𝜃) . (14)

MUSIC [23] 𝑃M𝑈𝑆𝐼𝐶(𝜃) = 1
wH (𝜃)VnVH

nw (𝜃) , (15)
ESPRIT [40]

Ψ = J1U+s J2Us (16)
Ψ

EVD= EΦEH , with Φ = diag [𝜙1, . . . , 𝜙𝑑] (17)𝜇𝑖 = ∠(𝜙𝑖), 𝑖 = 1, . . . , 𝑑 (18)
preprocessing step, a matrix Z is returned and used by the
DoA methods summarized in Table 1.

In Table 1, the vector w(𝜃) in (13), (14), and (15) vary
according to the candidate values of 𝜃. The value of 𝜃 that
maximizes the expression in (13), (14), and (15) is the 𝜃1,
since, in Section 2, the data model assumes that the LoS
component faces no obstacles. Therefore, the component
corresponding to the greatest power should be the same
component with DoA equal to 𝜃1. Us ∈ C𝑀×𝑑 is signal
subspace, which is equal to the 𝑑 eigenvectors corresponding
to the 𝑑 greatest eigenvalues, whereasVn ∈ C𝑀×𝑀−𝑑 is a basis
for the noise subspace, composed by the𝑀− 𝑑 eigenvectors
associated with to the 𝑀 − 𝑑 smallest eigenvalues. In (17)
and (18), Φ is the diagonal matrix that has the eigenvalues
of Ψ. We compute all the spatial frequencies and the one
whose component has the greatest power is the 𝜇1 that can
be mapped to 𝜃1.
3.4. Tensor-Based DoA Estimation. In this subsection, a
tensor factorization, namely, the PARAFAC decomposition,
is applied. The PARAFAC decomposition generates three
factor matrices from a received tensor X, whose structure
is detailed in this subsection. One factor matrix corresponds
to the estimate of the steering matrix A containing DoA
information. In this subsection A is extracted from tensorX
to estimate the DoA of the impinging signal.

We first consider an unchanging sequence of 𝑁 symbols
transmitted periodically. Such symbols can be found in a
header or footer or even in the payload of a message. Alter-
natively, repeating sequences of symbols can be extracted
from time periods when no data is being transmitted, but
the carrier of the transmitter is active. An example is given
as follows. Since the oscillators at the transmitter and at
the receiver are never exactly the same, a small frequency
deviation or constant phase change is observed at the receiver.
At an MSK receiver, if the deviation is positive, a sequence
of ones can be extracted and if the deviation is negative a
sequence of zeros is observed.

The symbols corresponding to the sequence from the 𝑖-th
source is represented by the vector c𝑖 ∈ C𝑁×1. Accordingly,
we can build a received signal matrix

X𝑖 (𝑝) = 𝛾𝑖 (𝑝) a𝑖 (𝜇𝑖) cT𝑖 , ∈ C𝑀×𝑁 (19)

where 𝑝 is the period corresponding to the sequence trans-
mission. Generalizing for 𝑑 signals we find

X (𝑝) = AD𝛾 (𝑝)CT, ∈ C𝑀×𝑁, (20)
where D𝛾(𝑝) = diag([𝛾1(𝑝) 𝛾2(𝑝) . . . 𝛾𝑑(𝑝)] )T and C =[c1 c2 . . . c𝑑].

For 𝑃 transmitted sequences, the symbols can be concate-
nated along the third dimension to form the received signal
tensor

X = [X (1) ⊔3 X (2) ⊔3 . . . ⊔3 X (𝑃)]
∈ C𝑀×𝑁×𝑃, (21)

where ⊔3 represents concatenation along the third dimen-
sion. Since the slices of X can be written as (20), X has a
PARAFAC structure and can be decomposed into three factor
matrices A,C and Γ, where Γ contains the diagonals ofD𝛾(𝑝)
along its rows. To factorize X, we first rewrite it in three
different matrix representations or unfoldings

X(1) = A (C ⬦ Γ)T , (22)
X(2) = C (Γ ⬦ A)T , (23)
X(3) = Γ (A ⬦ C)T , (24)

where ⬦ is the Khatri-Rao (column-wise Kroenecker) prod-
uct.

It is known that minimizing (22), (23), and (24) in the
least squares sense [62] leads to the following solutions:

Â =X(1) [(C ⬦ Γ)T]+ , (25)
Γ̂ =X(2) [(Γ ⬦ A)T]+ , (26)
Ĉ =X(3) [(A ⬦ C)T]+ . (27)

We consider the well-known Alternating Least Squares
(ALS) algorithm to solve (25), (26), and (27) in an iterative
way. Since C is known, the estimation step (27) is skipped,
and the ALS algorithm alternates between the estimations of
A and Γ in a two-step approach [63].

Once convergence is achieved, we use Â to extract the
DoA of the 𝑖-th source as follows:

𝜃𝑖 = argmax
𝜃

aH𝑖 (𝜃) â𝑖 (28)
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Wireless Communications and Mobile Computing 7

Table 2: Number of frames captured at each 10∘ step of the measurement campaign.

DoA −90∘ −80∘ −70∘ −60∘ −50∘ −40∘ −30∘ −20∘ −10∘ 0∘ 10∘ 20∘ 30∘ 40∘ 50∘ 60∘ 70∘ 80∘ 90∘
Frames 31 29 29 30 33 34 32 29 24 30 32 24 30 33 26 31 43 41 31

Table 3: RMSE for the schemes in Table 1 without the preprocessing using the measurements from Figure 8.

Algorithm DS CAP. MUS. ESP. TEN.
RMSE 2.3∘ 1.7∘ 4.0∘ 2.8∘ 1.7∘
Variance of the RMSE 4,3∘ 1.1∘ 11.5∘ 4.1∘ 4.4∘

Tx Rx

Figure 6: Photo taken during the measurement campaigns of the
outdoor scenario pointing out the positions of the transmitter and
of the antenna array based receiver.

4. Experiments

In this section, we validate our proposed drone tracking
device with measurement campaigns in an outdoor scenario.
In Section 4.1, the setup for the measurement campaign is
described, whereas, in Section 4.2, we present the obtained
results.

4.1. Experimental Setup. In Figure 6, we depict the outdoor
scenario used for the measurement campaigns. On the right-
hand, we placed our drone tracking device, proposed in
Section 3, as the receiver, whereas, on the left-hand, the
transmitter is placed. The transmitter is a 2x2 MIMO SDR
platformASPR4 [64], with frequencies ranging from 50MHz
to 6.0 GHz, a channel bandwidth varying from 200 kHz to 56
MHz and a maximum power of 10 dBm at the output port.

As shown in Figure 7, the distance between the transmit-
ter and the receiver is 48 m. Both transmitter and receiver
are placed on tripods 115 cm above the ground. Note that the
red “X” in Figure 7 is the location from where the photo in
Figure 6 has been taken.

Both the transmitter and the receiver were set up using
a MSK message signal, at 2.48 GHz carrier frequency and
250 kbps of data rate. Before starting the experiment, the2.48 GHz frequency was scanned and no noise source was
detected. In order to verify that the receiver properly works
and measures the Bit Error Rate (BER), we have to decode
the signal. To this purpose, the transmitted package must be
known and consists of pseudo random sequences of length
1024 bits and a header and footer with 16 bits each defined as
0xFFFF and 0x0000, respectively. Therefore, the total size of
the package is 1056 bits. The transmitter uses both sampling
frequency and bandwidth of 2MHz. At the receiver side, a 4

MHz sampling frequency and 4 MHz bandwidth are used.
Each captured frame at the receiver has 5120 samples.

As shown in Figure 7, the transmitter is fixed and the
receiver rotates from +90∘ to −90∘ in steps of 10∘. According
to Table 2, which presents the number of captured frame per
DoA, at each 10∘ step, about 31 frames of size 5120 samples are
captured.

4.2. Experimental Results. This subsection shows the perfor-
mance of the DoA estimation schemes shown in Table 1.
During the measurement campaign, the achieved Bit Error
Rate (BER) was 10−4.

Figure 8 shows the DoA calculated by rotating the base
array over the time. Our proposed device works for a DoA
ranging from −60∘ to 60∘. The DS, Capon, MUSIC, ESPRIT,
and Tensor combined with preprocessing schemes are shown
in Figure 9(b).

In Tables 3 and 4, we present the Root Mean Square
Error RMSE for the schemes in Table 1 with and without pre-
processing schemes using the measurements from Figure 6,
respectively. The equation for RMSE is given by

RMSE (𝜃1) = √ 1𝑄
𝑄∑
𝑞=1

(𝜃(𝑞)1 − 𝜃(𝑞)1 )2 (29)
where 𝑞 is one realization of a total of 𝑄 realizations for
each 10∘ stage of the measurement campaign. In other words,
the acquired data at each 10∘ degree step is reshaped into
small matrices. The computation of the DoA is individually
performed for each of these matrices. In our experiment,
we chose empirically matrices of size 4 × 1000. Since, as
shown in Table 2, at each 10∘ step 31 frames of size 5120
samples are captured, in average there are approximately 𝑄 =158matrices depending on the data reduction performed in
Section 3.3.1. The variables 𝜃 and 𝜃 stand for the actual and
the estimated DoA, respectively.

Comparing Tables 3 and 4 we can note that, except for
the Tensor, the algorithms presented improvement in terms
of RMSE after incorporating the preprocessing. CAPON and
the Tensor increased the variance with the preprocessing.
The smallest RMSE was achieved by the DS approach after
preprocessing. Note that the ESPRIT assumes the shift
invariance property, while both MUSIC and ESPRIT exploit
the property of the orthogonality between signal and noise
subspaces. Note that both assumptions are approximations
and, therefore, their exploitation may cause additional errors.
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8 Wireless Communications and Mobile Computing

Table 4: RMSE for the schemes in Table 1 with the preprocessing using the measurements from Figure 8.

Algorithm DS CAP. MUS. ESP. TEN.
RMSE 1,6∘ 1,7∘ 1,7∘ 1,9∘ 2,7∘

Variance of the RMSE 2,3∘ 2,5∘ 2,4∘ 1,8∘ 23,7∘

Table 5: Comparison between the obtained results and the DoA estimation in practical measurements results already available in the
literature.

Drone detect solutions General DoA solutions
Solutions Proposed [25] [27] [20] [21] [22] [24] [15]
DoA precision 1.9∘ 1∘ 1-3∘ 5∘ 1∘ 4∘ 0.5-2∘ 2∘
Uses anechoic chamber No x x No Yes Yes Yes Yes
Low cost Yes No No Yes Yes Yes Yes Yes

In Table 5, we compare the DoA estimation results
obtained with our framework and with the state-of-the-
art approaches. Furthermore, we show that, even without
involving anechoic chamber in our tests, precise results are
obtained in comparison to references that implemented its
tests in a nonreflexive environment. The ‘x’ means that the
commercial solutions did not provide such information.
Finally, we provide the information about which of the
solutions has low cost.

As shown in Table 6, the total cost of the proposed drone
tracking solution is US$ 2.222, whereas the solutions in [25]
and [27] cost US$ 226.000 and US$ 120.000, respectively.
Therefore, our proposed off-the-shelf solution costs less than
2 % of the commercial solutions in [25, 27].

5. Conclusions

In this paper, we have proposed a low cost antenna array
based drone tracking device for outdoor environments. The
proposed solution is divided into hardware and software
parts. The hardware part of the proposed device is based on
off-the-shelf components such as an omnidirectional antenna
array, a 4-channel SDR platform with carrier frequency
ranging from 70MHz to 6 GHz, a FPGAmotherboard, and a
laptop. The software part includes algorithms for calibration,
model order selection (MOS), andDoAestimation, including
specific preprocessing steps to increase the DoA accuracy.
We have evaluated the performance of our proposed low cost
solution in outdoor scenarios. Our measurement campaigns
have shown that when the array is in the front fire position,
i.e., with a DoA ranging from −60∘ to 60∘, the maximum
and the average DoA errors are 6∘ and 1,9∘, respectively. Our
proposed off-the-shelf solution costs less than 2 % of com-
mercial solutions in [25, 27]. In order to further improve our
analysis of the proposed system and our results, experiments
in an anechoic chamber can be performed. Moreover, the
performance of the proposed framework can be improved
by incorporating interpolation schemes. Perspectives also
include the adoption of a more realistic noise model to
simplify the computation of the thresholds of the Exponential
Fitting Test (EFT).

Appendix

A. Proposed Extrapolation Algorithm to
Find the EFT Thresholds for Extremely
Low Probability of False Alarm

In this appendix we propose an extrapolation algorithm to
estimate the thresholds of the EFT algorithm in cases that the
Probability of False Alarm (Pfa) is extremely low.

The EFT is based on the approximation that the profile of
the ordered noise eigenvalues has an exponential behaviour.
The profile 𝑎(𝑀,𝑁) can be expressed as

𝑎 (𝑀,𝑁)
= √ 12 ( 15𝑀2 + 2 − √ 225(𝑀2 + 2)2 − 180𝑀𝑁(𝑀2 − 1) (𝑀2 + 2)).

(A.1)

Given that 𝑑 = 𝑀 − 𝑃∗, our goal is to vary 𝑃 such that
we find 𝑃∗ that �̂�𝑀−𝑃 ≪ 𝜆𝑀−𝑃, where �̂�𝑀−𝑃 and 𝜆𝑀−𝑃 stand
for predicted (𝑀 − 𝑃)th noise eigenvalue and𝑀 − 𝑃 stands
for actual eigenvalue, respectively. Note that the EFT assumes
that smallest eigenvalue is a noise eigenvalue. Therefore, 𝑃
varies from 1 to 𝑀 − 1. Using (A.1), [44] has derived the
following expression:

�̂�𝑀−𝑃 = (𝑃 + 1) ⋅ ( 1 − 𝑎 (𝑃 + 1,𝑁)1 − 𝑎 (𝑃 + 1,𝑁)𝑃+1) ⋅ 𝜎2, (A.2)

𝜎2 = 1𝑃 + 1
𝑁∑
𝑖=0

𝜆𝑀−𝑖, (A.3)

where 𝜎2 is the estimated noise power.
In order to improve further the performance of the

EFT approach, thresholds coefficients 𝜂𝑃 are computed using
noise-only simulated data following Complex-Valued Circu-
larly Symmetric Gaussian and identically and independently
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Wireless Communications and Mobile Computing 9

Table 6: Price table for the hardware of the proposed drone tracker device.

Hardware Cost (US$)
AD-FMCOMMS5-EBZ-ND [33] 1080
4 × Dual-Band Antenna 2.4 & 5GHz [36] 11
ZYNQ 7000 Zc702 [35] 999
Power Divider 2.4-6GHz 30Watts RoHS IP67 [41] 109
5 × cable 305mm HPP100 SMA [42] 23
Total 2222

Few small trees

Empty area
with sand floor

48 m
TX

M
et

al
 fe

nc
e

X

Several tall trees

Bushes

0∘

90∘

−90∘

RX

Figure 7: Top view of the outdoor scenario for the measurement campaigns including the positions of the transmitter and of the antenna
array based receiver.
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Figure 8: Comparison between the DoA estimation schemes by
varying the DoA from +60∘ to −60∘ with steps of 10∘.

distributed (i.i.d.) as indicated in Section 2. Depending on the𝜂𝑃, we have two hypothesis:
H𝑃 : 

𝜆𝑀−𝑃 − �̂�𝑀−𝑃�̂�𝑀−𝑃
 ≤ 𝜂𝑃 (A.4)

H𝑃 : 
𝜆𝑀−𝑃 − �̂�𝑀−𝑃�̂�𝑀−𝑃

 > 𝜂𝑃 (A.5)

where H𝑃 : 𝜆𝑀−𝑃 is a noise eigenvalue and H𝑃 : 𝜆𝑀−𝑃 is
a signal eigenvalue. In order to have all 𝜂𝑃 depending of the
Pfa, we can define the Pfa as

Pfa = Pr [d̂ ̸= 0 | d = 0] . (A.6)

Note that the 𝜂𝑃 thresholds are obtained by Monte Carlo
simulations carried out in the only-noise scenario following
the steps in [44] and by choosing the following amount of
realizations:

I = 10
Pfa
. (A.7)
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10 Wireless Communications and Mobile Computing
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Figure 9: Comparison of the DoA estimation error between the DoA estimation schemes from Table 1 by varying the angle from −90∘ to 90∘
with steps of 10∘.
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Figure 10: Log linear extrapolation based on two points given by Pfas and thresholds 𝜂𝑃.
Depending on the noise behaviour and the parameters

of the scenario [54, 56], the thresholds can be extremely
low.Therefore, the computational complexity of (A.7) can be
prohibitive. In order to overcome such limitation, we propose
an extrapolation approach to compute the thresholds for
extremely low values of Pfa.

Sincewewish to estimate values outside the known limits,
we can use an extrapolation method and approximate the
descending side of the curve as a decreasing exponential. In
order to simplify the approximation, we adopt a logarithmic
scale as exemplified in Figure 10.

Given the two known points in Figure 10 obtained by
Monte Carlo simulations and given the linear extrapolation

in (A.8), we can compute the two unknown constants a and
b.

Pfa = a ⋅ 𝜂P + b. (A.8)

The constants a and b are given by (A.9) and (A.10)
by using the two known points (log10(Pfa1), 𝜂1) and(log10(Pfa2), 𝜂2).

𝑎 = log10 (Pfa2/Pfa1)(𝜂2 − 𝜂1) (A.9)

𝑏 = log10 (Pfa2) − 𝜂2 ⋅ ( log10 (Pfa2/Pfa1)(𝜂2 − 𝜂1) ) (A.10)
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Figure 11: Thresholds for extrapolated data using computation with M=4 and N=41.

By replacing a and b in (A.8), we obtain the expression
for the 𝜂𝑃 in (A.11).

𝜂𝑃 = log10 (Pfa) − (log10 (Pfa2) − (𝜂2/ (𝜂2 − 𝜂1)) ⋅ log10 (Pfa2/Pfa1))
log10 (Pfa2/Pfa1) / (𝜂2 − 𝜂1) . (A.11)

Following the framework of Figure 3, we set up the EFT
with a Pfa = 10−263 and we obtained the following values for
the thresholds: 𝜂1 = 1.5810, 𝜂2 = 1.7810, and 𝜂3 = 2.1840.

Note that there are only three thresholds, since the
smallest eigenvalue is assumed as a noise eigenvalue in the
EFT approach. In Figures 11(a), 11(b), and 11(c), we depict
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Figure 12: Power spectral density estimate of the only-noise samples
captured by the 1st antenna of the antenna array.
the extrapolation curves for the thresholds 𝜂1, 𝜂2, and 𝜂3,
respectively.

B. Noise Analysis

In Section 2, the noise is assumed to be Complex-
Valued Circularly Symmetric Gaussian and identically
and independently distributed (i.i.d.). The EFT relies
on these properties of the noise. Due to extremely low
values of the Pfa in Appendix A, we analyze the noise
behaviour.

According to Figure 12, the Power Spectrum Den-
sity (PSD) is not flat, indicating that the noise is time
correlated.

In Figure 13, we depict the normalized histogram for
antenna 3. Note that the Gaussian approximation has errors
that can be reduced with an improved model.
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